Asymptotic Behaviors of Intermediate Points in the Remainder of the Euler-Maclaurin Formula

نویسندگان

  • Aimin Xu
  • Zhongdi Cen
چکیده

and Applied Analysis 3 in an infinite number of variables x1, x2, . . ., defined by the series expansion 1 k! (∑ m≥1 xm t m! )k ∑ n≥k Bn,k t n! , k 0, 1, 2, . . . . 2.2 Their explicit expressions are given by the formula Bn,k x1, x2, . . . , xn−k 1 ∑ n! a1! 1! a2! 2! a2 · · · x1 1x2 a2 . . . , 2.3 where the summation takes place over all nonnegative integers a1, a2, . . ., such that a1 2a2 · · · n and a1 a2 · · · k. For example, we have B0,0 1, B1,1 x1, B2,1 x2, B2,2 x1, B3,1 x3, B3,2 3x1x2, B3,3 x1, . . . , Bn,1 xn, Bn,n x1. 2.4 For more important properties the reader is referred to 15 . 3. Asymptotic Expansions of Intermediate Points In this section, we will consider asymptotic behavior of the point ξ in 1.4 . Before the main result is given we first present an essential lemma. Lemma 3.1 see 15 . The following identity:

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Resurgence of the Euler-MacLaurin summation formula

Abstract. The Euler-MacLaurin summation formula relates a sum of a function to a corresponding integral, with a remainder term. The remainder term has an asymptotic expansion, and for a typical analytic function, it is a divergent (Gevrey-1) series. Under some decay assumptions of the function in a half-plane (resp. in the vertical strip containing the summation interval), Hardy (resp. Abel-Pla...

متن کامل

Asymptotic Euler-Maclaurin formula for Delzant polytopes

Formulas for the Riemann sums over lattice polytopes determined by the lattice points in the polytopes are often called Euler-Maclaurin formulas. An asymptotic Euler-Maclaurin formula, by which we mean an asymptotic expansion formula for Riemann sums over lattice polytopes, was first obtained by Guillemin-Sternberg [GS]. Then, the problem is to find a concrete formula for the each term of the e...

متن کامل

The Euler-Maclaurin formula for simple integral polytopes.

We give a Euler-Maclaurin formula with remainder for the sum of a smooth function on the integral points in a simple integral lattice polytope. Our proof uses elementary methods.

متن کامل

The Calculation of Fourier Coefficients

The Möbius inversion technique is applied to the Poisson summation formula. This results in expressions for the remainder term in the Fourier coefficient asymptotic expansion as an infinite series. Each element of this series is a remainder term in the corresponding Euler-Maclaurin summation formula, and the series has specified convergence properties. These expressions may be used as the basis...

متن کامل

Asymptotic Approximations to Truncation Errors of Series Representations for Special Functions

∞ ν=0 aν for special functions are constructed by solving a system of linear equations. The linear equations follow from an approximative solution of the inhomogeneous difference equation ∆rn = an+1. In the case of the remainder of the Dirichlet series for the Riemann zeta function, the linear equations can be solved in closed form, reproducing the corresponding Euler-Maclaurin formula. In the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010